

# 3D Reconstruction From Bi-Planar X-Rays

Hamza Bennani Brendan McCane

#### **Problem Statement**

Can we reconstruct the 3D bone structure in vivo from just two x-rays?





(a) Anterio-Posterior x-ray of human spine (b) Latero-Lateral x-ray of human spine

Figure: Examples of data used to reconstruct the 3D human spine

- The reconstruction is an ill-posed problem
- Use of prior knowledge through 3D models of human vertebrae
- Vertebrae are difficult and complicated, but mostly smooth shapes
- Calculate the 3D variations of the data set and directions of variations
- Generate new models to fit to new data
- Find the best fit to new data x-rays

## 3D Models Of Human Vertebrae

How to extract 3D point clouds from images of real world?

- Use 87 models accessed through the W. D. Trotter Anatomy Museum at the Department of Anatomy, Otago School of Medical Sciences, University of Otago, New Zealand.
- Take on average 280 images around the vertebrae
- Segment the images to remove the non-vertebrae parts in images
- Use an image-based technique to reconstruct 3D models (3D point clouds of vertebrae)





(a) Anterior View

(b) Lateral View





(c) Lateral View

(d) Superior View

Figure: Different views on different 3D models reconstructed

## Statistical Shape Models

Using well known methods of morphological studies we could extract different variations and directions.

- In 3D, each vertebra represented with n landmarks  $(x_i, y_i, z_i) \in \mathbb{R}^3$  in cartesian coordinates
- $s = (x_1, y_1, z_1, ..., x_n, y_n, z_n)^T \in \mathbb{R}^{3n}$
- Using N shapes, mean shape  $\bar{s}$  is defined as follows:

$$\bar{s} = \frac{1}{N} \sum_{i=1}^{N} s_i \tag{1}$$

and the covariance matrix as follows:

$$C = \frac{1}{N} \sum_{i=1}^{N} (s_i - \bar{s})(s_i - \bar{s})^T$$
 (2)

- PCA on C covariance matrix
- ullet new shape  $=\phi b+ar{s}$  where:  $\phi$  represents the orthogonal basis of principal modes and b are the associated weights taken in general between -3SD and +3SD



(a) Mean shape of L3 vertebra



(b) Shape generated by mean -2SD of first principal component



(c) Shape generated by mean +2SD of first principal component



(d) Shape generated by mean +2SD of second principal component



(e) Shape generated by mean +2SD of second principal component

Figure: First and Second Principal Component effects on L3 vertebra

#### Conclusions, Open Problems, etc.

- Compare results to those provided by a CT scan or/and MRI
- Construct statistical shape model for the whole spine
- Model the soft tissues to have better pseudo x-rays

# Fitting Prior Knowledge To New X-Rays

To find the best model and location which fits best to the new x-rays we use gradient descent methods.

- Start at mean shape
- Generate pseudo x-ray
- Do a comparison with real x-ray (using a defined error metric)
- Descend along shape and relative position of x-rays planes.



(a) Anterio-Posterior pseudo x-ray of human vertebra



(b) Latero-Lateral pseudo x-ray of human vertebra

Figure: Examples of pseudo x-rays in two views according to a position of vertebra relative to the source of light and the shape variations





Figure: Different views of 3D reconstruction from bi-planar x-rays